

Fighting the War in Memory

Software Vulnerabilities and Defenses Today

Antonio Hüseyin Barresi 2014

2

3

Morris WormMorris Worm

4

• On November 2, 1988 the Morris Worm was
released

• Mainstream media attention

• Conviction under the Computer Fraud and Abuse Act

• First well-known program
exploiting a buffer overflow

http://en.wikipedia.org/wiki/Morris_worm

Long ago – late 1980s

5

25 years later

Memory errors and memory
corruption vulnerabilities are
still an issue!

6

This talk is about

• Why these bugs are still a concern

• How exploits work

• Modern defenses

7

MotivationMotivation

8

Today, 2014

• Memory errors are still a problem

• “Unsafe“ languages like C/C++ very popular
• Prediction: C/C++ will be with us for a long time
• Yes, there are alternatives... sometimes

• Criminals found ways of monetization

• Software systems are gaining complexity

http://www.langpop.com/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

9

Terminology

Exploit

“An exploit is a piece of software, a chunk of data,
or a sequence of commands that takes advantage
of a bug, glitch or vulnerability in order to...“

Zero-Day Attack

“A zero-day attack or threat is an attack that
exploits a previously unknown vulnerability in a
computer application, ...“

http://en.wikipedia.org/wiki/Exploit_(computer_security)
http://en.wikipedia.org/wiki/Zero-day_attack

10

Attacks
Victim Attacker

Exploits memory error
within vulnerable victim
software

Runs a vulnerable web
server software

Runs an exploit that triggers
a memory error within the
web server software

$>./exploit 192.168.1.28

Runs a malicious web server
serving HTML documents
that trigger a memory error
within the web browser

Sends a malicious PDF
attachement by email

GET /index.html HTTP/1.1GET /index.html HTTP/1.1
Host: www.vulnsite.comHost: www.vulnsite.com
Keep-Alive: 300Keep-Alive: 300
Connection: keep-aliveConnection: keep-alive
Cookie: CID=r2t5uvjq43Cookie: CID=r2t5uvjq43
5r4q7ib3vtdjq120f83jf85r4q7ib3vtdjq120f83jf8
... <binary data>... <binary data>

Runs a vulnerable web
browser or PDF reader

11

Arbitrary Arbitrary
Code Code
ExecutionExecution Dr. EvilDr. Evil

12

Modern software stack

HardwareHardware

Operating SystemOperating System

Libraries & ToolsLibraries & Tools

ApplicationApplication

Web BrowserWeb Browser Java VMJava VM

JavaJava
ApplicationApplication
& Libraries& Libraries

JavaJava
ApplicationApplication
& Libraries& Libraries

Client-sideClient-side
ScriptScript

Client-sideClient-side
ScriptScript

So
ft

w
ar

e
St

ac
k

13

Modern software stack

Potentially prone to memory errors & corruption

So
ft

w
ar

e
St

ac
k

HardwareHardware

Operating SystemOperating System

Libraries & ToolsLibraries & Tools

ApplicationApplication

Web BrowserWeb Browser Java VMJava VM

JavaJava
ApplicationApplication
& Libraries& Libraries

JavaJava
ApplicationApplication
& Libraries& Libraries

Client-sideClient-side
ScriptScript

Client-sideClient-side
ScriptScript

14

The Internet of “Memory Unsafe“ Things

15

Common Vulnerabilities and Exposures
High severity Medium severity Low severity

https://cve.mitre.org/

M
em

or
y

Er
ro

rs
XSS

 +
 C

SR
F

SQ
L

In
je

ct
io

n

M
em

or
y

Er
ro

rs
XSS

 +
 C

SR
F

SQ
L

In
je

ct
io

n

M
em

ory
 E

rr
ors

XSS
 +

 C
SR

F
SQ

L
In

je
ct

io
n

% of total
CVEs

Total CVEs without “Insufficient Information“ 25'298, time span: 1.1.2009 – 26.8.2014
Memory Errors: CWE-119, CWE-399 “use after free“, CWE-189 in High / XSS + CSRF: CWE-79, CWE-352 / SQL Injection: CWE-89

36.29 %

0.1 %

19.84 %

8.05 %

28.89 %

2.75 % 3.34 %

31.39 %

0 %

16

Finding vulnerabilities

• Finding exploitable errors is not trivial
• Static and dynamic analysis, testing, reviews

Edsger W. Dijkstra, 1969:

“Testing shows the presence,
 not the absence of bugs.“

17

Thinking about a career change?

http://www.forbes.com/sites/andygreenberg/2012/03/23/shopping-for-zero-days-an-price-list-for-hackers-secret-software-exploits/
http://www.pwn2own.com/2014/01/pwn2own-2014-rules-unicorns/
http://www.chromium.org/Home/chromium-security/hall-of-fame

http://www.forbes.com/sites/andygreenberg/2012/03/23/shopping-for-zero-days-an-price-list-for-hackers-secret-software-exploits/
http://www.pwn2own.com/2014/01/pwn2own-2014-rules-unicorns/

18

Thinking about a career change?

http://www.forbes.com/sites/andygreenberg/2012/03/23/shopping-for-zero-days-an-price-list-for-hackers-secret-software-exploits/
http://www.pwn2own.com/2014/01/pwn2own-2014-rules-unicorns/
http://www.chromium.org/Home/chromium-security/hall-of-fame

http://www.forbes.com/sites/andygreenberg/2012/03/23/shopping-for-zero-days-an-price-list-for-hackers-secret-software-exploits/
http://www.pwn2own.com/2014/01/pwn2own-2014-rules-unicorns/

19

Publicly Publicly
knownknown

Individuals, groups or security researchersIndividuals, groups or security researchers

Public directories Public directories
& databases& databases

Bounty & reward Bounty & reward
programsprograms

CompetitionsCompetitions

20

Publicly Publicly
knownknown

Individuals, groups or Individuals, groups or
security researcherssecurity researchers

Public directories & Public directories &
databasesdatabases Bounty & reward Bounty & reward

programsprograms

CompetitionsCompetitions

21

Publicly Publicly
knownknown

UnknownUnknown

Individuals or Individuals or
groupsgroups

GovernmentGovernment
agenciesagencies

SpecializedSpecialized
companiescompanies

CybercrimeCybercrime

IndustrialIndustrial
espionageespionage

Individuals, groups or Individuals, groups or
security researcherssecurity researchers

Public directories & Public directories &
databasesdatabases Bounty & reward Bounty & reward

programsprograms

CompetitionsCompetitions

22

In the end

We have to accept the residual risk...

...but to manage the risks we have to
understand the attack techniques and
the effectiveness of available
defenses!

23

Memory Errors &Memory Errors &
VulnerabilitiesVulnerabilities

24

Memory errors & vulnerabilities

• Come in various forms with different root causes

• Allow attackers to corrupt memory
in a more or less controllable way
• Worst case: attackers gain arbitrary code execution

• Exist in programs written in “unsafe“ languages
that do not enforce memory safety

25

“Unsafe“ languages

• Allow low-level access to memory
• Typed pointers & pointer arithmetic
• No automatic bounds checking / index checking

• Weakly enforced typing
• Cast (almost) anything to pointers

• Explicit memory management
• Like malloc() & free() in C

26

“Unsafe“ languages - C

#include <stdio.h>
#include <math.h>

long computation(int x, int y, int z, double f) {
 return (long)(((x*y)/z)*sin(f));
}

void main()
{
 (int)computation(32, 64, 2, M_PI/6) = 128;
 return;
}

shell:~$ gcc -o segfault segfault.c -lm

shell:~$./segfault

Segmentation fault (core dumped)

shell:~$

shell:~$ gcc -o segfault segfault.c -lm

shell:~$./segfault

Segmentation fault (core dumped)

shell:~$

27

“Unsafe“ languages - C

#include <stdio.h>
#include <string.h>

#define STDIN 0

void vulnFunc() {
 char buf[1024];
 read(STDIN, buf, 2048);
}

shell:~$ gcc -o vuln vuln.c -fno-stack-protector

shell:~$./vuln

read> hi there!

shell:~$./vuln

read>

AA

AAA...

Segmentation fault (core dumped)

shell:~$

shell:~$ gcc -o vuln vuln.c -fno-stack-protector

shell:~$./vuln

read> hi there!

shell:~$./vuln

read>

AA

AAA...

Segmentation fault (core dumped)

shell:~$

void main() {
 printf("read> ");
 vulnFunc();
 return;
}

28

Types of memory errors

Spatial error Temporal error

Array / Object

[out of bounds]

start

*ptr

Array / ObjectArray / Object

De-reference pointer that is
out of bounds

Read or write operation

De-reference pointer to freed
memory

Read operation

*ptr

29

Exploiting memory errors

Spatial error Temporal error

Array / Object

Attacker supplied data
overwrites/reads data/pointers

Overwrite data or pointers

Used or de-referenced later

Make application allocate
memory in the freed area

Used as old type

Attacker supplied data
used as wrong type

*ptr

*ptrstart

30

Attackers use memory errors to

• Overwrite data or pointers
• That might be used to overwrite data or pointers
• Function pointers, sensitive data, index values,

control-flow sensitive data etc.

• Leak information
• E.g., corrupt a length field

• Construct attacker primitives
• Write primitive (write any value to arbitrary address)
• Read primitive (read from any address)
• Arbitrary call primitive (call any arbitrary address)

31

Types of bugs

• Out-of-bounds bugs / Buffer overflows
• On stack or heap

• Dangling pointer / Use-after-free
• Integer bugs, signedness bugs
• Format string bugs
• Uninitialized memory
• NULL pointer dereference
• etc.

32

Memory corruption attack
Victim Attacker

<html><html>
<head><head>
</head></head>
<body><body>
... <... <html or javascript thathtml or javascript that
triggers the memory corruptiontriggers the memory corruption
vulnerabilityvulnerability> ...> ...
</body></body>
</html></html>

0xe8a0f000

Heap

Corrupted

0x41414141

Code

Stack

Write primitive
*0xe8a0f000 = 0x41414141

33

Attack types

• Code corruption attack

• Control-flow hijack attack

• Data-only attack

• Information leak

Attack model according to: “SoK: Eternal War in Memory“ Laszlo Szekeres, Mathias Payer, Tao Wei, Dawn Song
http://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf

34

Attack types

• Code corruption attack

Control-flow hijack attack

• Data-only attack

• Information leak

Attack model according to: “SoK: Eternal War in Memory“ Laszlo Szekeres, Mathias Payer, Tao Wei, Dawn Song
http://www.cs.berkeley.edu/~dawnsong/papers/Oakland13-SoK-CR.pdf

35

Control-flow hijack attacks

• Most powerful attack

• Hijack control-flow
• To attacker supplied arbitrary machine code
• To existing code (code-reuse attack)

• Corrupt code pointers
• Return addresses, function pointers, vtable

entries, exception handlers, jmp_bufs

36

Normal control-flow

ret

ind.jmpret

ret

ind.call

ret

Direct branch
Indirect branch

Basic block

37

Hijacked control-flow

ret

ind.jmp

ret

ind.call

ret

Direct branch
Indirect branch

ret

Basic block

38

Control-flow hijack attacks

• Most ISAs support
indirect branch instructions
• E.g., x86 “ret“, indirect “jmp“, indirect “call“

fptr is a value
in memory
at 0xafe08044
• branch *fptr

fptr:
0xafe08044

Code

0x8056b30

good_func:good_func:
0x08056b30

39

Control-flow hijack attacks

fptr is a value in memory at 0xafe08044
• branch *fptr

• fptr was corrupted
by an attacker

Attacker goal: hijack control-flow to injected
machine code or to “evil functions“

fptr:
0xafe08044

Code

Corrupted

evil_code:evil_code:

40

Branch instructions – Intel x86

• Direct or indirect call
• call 804a450 or call *0x24(%ebp)

• Direct or indirect jmp
• jmp 8049e70 or jmp *0x805a874(,%eax,4)

• There are also conditional jumps (direct)

• ret, Indirect by design
• Take value on top of stack and branch to it

• call instructions push address of the next instruction onto the
stack so the ret instruction can use it

41

AttackAttack
Techniques & Techniques &
DefensesDefenses

42

Generalized process layout – user space

0x00000000

0xffffffff

ELF / PE
files

Stack: contains local data of
functions/procedures/methods

Code

Data

Heap

Memory Mappings

Stack

Libraries

Heap: contains data managed by the
heap manager

Memory Mappings: mapped files or
anonymous memory mappings

Libraries: code and data of
dynamically linked libraries

start stack

43

Attack surface

0x00000000

0xffffffff

Code

Data

Heap

Memory Mappings

Stack

Libraries

Storage

Network

Process

OS

Network
API

FileSystem
API

IPC 011010001
100100100
111010110

44

Attack surface

0x00000000

0xffffffff

Storage

Network

Process

OS

Network
API

FileSystem
API

IPC 011010001
100100100
111010110

attacker
code &

data

attacker
code &

data

attacker
code &

data

Code

Data

Heap

Memory Mappings

Stack

Libraries

attacker
code &

data

attacker
code &

data

45

Control-flow hijack to injected code

0x00000000

0xffffffff

%eip

0x084a4504

Code

Heap

Stack

0x084a4504

call *0xe0fa4404

func:

0xe0fa4404

0x00000000

0xffffffff

0x084a4504

0xe0fa4404

Code

Heap

Stack

0xfffc8408

call *0xe0fa4404

func:

Attacker
Code

0xfffc8408

%eip

Indirect call to func() Hijacked indirect call

46

Non-eXecutable data (NX)

0x00000000

0xffffffff

Code

Heap

Stack

call/jmp/ret

attacker
code &

data

attacker
code &

data

<code from binary>

rw-rw-

rw-rw-

r-xr-x

• Make data regions
non-executable
(by default)

• Changing protection
flags or allocating rwx
memory still possible
(on most systems)
• Required for JITs

47

Non-eXecutable data (NX)

• Code regions will be non-writable
• Else code corruption attacks possible

• Also known as
• Data Execution Prevention (DEP) on Windows
• NX, Non-eXecutable Memory on Linux
• W^X, on OpenBSD
• Implemented by hardware where available (NX-bit)

48

NX / DEP – implementation issues

Compatibility
• Binary images need to provide separate

sections/segments that can be mapped
exclusively as rw- OR r-x

• Linker support required

• Self-modifying code not allowed
• Compiler support required
• If code is generated just-in-time,

explicit rwx allocation required

49

Bypassing NX / DEP

0x00000000

0xffffffff

Code

Heap

Stack attacker
code &

data

attacker
code &

data

rw-rw-

rw-rw-

r-xr-x

• Only use existing code

Code-reuse attack
• ret2libc, ret2bin, ret2*
• Return-oriented programming (ROP)
• Jump/Call-oriented programming

• Use code-reuse technique to
change protection flags
• Alllocate or make memory

executable
• mprotect/VirtualProtect
• mmap/VirtualAlloc

50

Code-reuse attack
Stack during vulnFunc()

%ebp

%esp

void vulnFunc() {
 char buf[1024];
 read(STDIN, buf, 2048);
}

Stack after read()

%ebp

%esp

• Stack-based buffer
overflow
• %eip and %ebp under

attacker control
• Local variables and

buffers under attacker
control

argumentsarguments

return addressreturn address

saved ebpsaved ebp

return address

saved ebp

buf[1024]

main() stack frame

rw-rw-

argumentsarguments

return addressreturn address

saved ebpsaved ebp

overwritten retaddr

overwritten ebp

buf[1024]

overwritten frame

rw-rw-

51

Code-reuse attack

Stack after read()

%ebp

%esp

• Before NX/DEP
• Return to attacker

supplied code
• Shellcode

• Bypass NX/DEP by using
existing code
• Executable or libraries

E.g., mprotect()

argumentsarguments

return addressreturn address

saved ebpsaved ebp

overwritten retaddr

overwritten ebp

buf[1024]

Attacker
Code

“Shellcode“

overwritten frame

rw-rw-

52

Code-reuse attack

Stack after read()

%ebp

%esp

• Let's call mprotect()
mprotect(address_shellcode, 4096, 0x1|0x2|0x4)

• 0x1|0x2|0x4 = RWX

• mprotect() will make the
stack executable
• And return to our shellcode

argumentsarguments

return addressreturn address

saved ebpsaved ebp

address mprotect()

dummy ebp

buf[1024]

Attacker
Code

“Shellcode“

address shellcode

4096

0x1|0x2|0x4

rw-rw-

53

Code-reuse attack

Stack after mprotect()
%ebp

%esp

• After mprotect() our stack is
executable again
• mprotect() will return to our

shellcode

• Works well on x86 32bit but
on x64 or ARM function
parameters are passed over
registers
• Fill registers with parameters

before invoking mprotect()

argumentsarguments

return addressreturn address

saved ebpsaved ebp

address mprotect()

dummy ebp

buf[1024]

Attacker
Code

“Shellcode“

address shellcode

4096

0x1|0x2|0x4

rwxrwx

54

Return-oriented programming
%ebp

%esp

• Use available code snippets
ending with ret instruction
• Called gadgets / ROP chain
• E.g., write primitive

Code

argumentsarguments

return addressreturn address

saved ebpsaved ebp

address gadget1

dummy ebp

buf[1024]

value

address gadget2

address

rw-rw-

dummy value

address gadget3

address gadget4

r-xr-x

pop %edx;
ret;
pop %edx;
ret; 11

pop %eax;
pop %ebx;
ret;

pop %eax;
pop %ebx;
ret;

22

mov %edx, (%eax);
mov $0x0, %eax;
ret;

mov %edx, (%eax);
mov $0x0, %eax;
ret;

33

St
ac

k

55

56

Return-oriented programming

• Very powerful!
• Turing complete although not required

• Can be initiated over call or jmp as well

• Need to be in control of memory %esp is pointing to
• Or make %esp point to area under control

• Also possible with jmp or call gadgets
• Complicated to keep control and dispatch to the next gadget
• Generalization: Gadget-oriented programming

57

Return-oriented programming

• Notes on calling convention

• x86 32bit, easy, arguments passed over stack
• If stack attacker controlled

• x86 64bit & ARM, arguments passed in registers
• More general purpose registers
• Calling functions more laborious
• Copy arguments from attacker data to registers

• ARM has interesting „pop“ into multiple registers feature

58

Addresses in memory

• To hijack control-flow or to corrupt memory an
attacker needs to know where things are in memory
• Addresses of data or pointers to corrupt
• Addresses of injected shellcode/payload
• Addresses of gadgets

• Sometimes it's enough to know the rough location but
most of the time attackers need the exact location
• Corrupting only least significant bytes i.e. an offset might

work in some special cases (but not in general)

59

Addresses in memory

Once upon a time...

• Addresses were more or less predictable

• Executables and libraries were prelinked to
certain addresses

• Stack and Heap base addresses were fixed
• With differences at runtime for specific locations due

to the dynamic behaviour of the process

60

ASLR

Today most Operating Systems implement
Address Space Layout Randomization

• Randomize memory layout of processes to
make address prediction or guessing hard

• What can be randomized?
• OS: Stack, heap and memory mapping base addresses
• OS, compiler, linker: Exectuables and libraries

• Position-indipendent or relocatable code

61

Randomization of layout

0x00000000

0xffffffff

mm base
range

Executable

Heap

Stack

Library 2

Library 1

Memory Mapping

heap
base
range

stack
base
range

libraries
base range

executable
base range

aligned

page-
aligned

page-
aligned

page-
aligned

page-
aligned

Use source of
randomness to
randomize within
ranges

62

ASLR – implementation issues

Compatibility
• In general: Usage of fixed addresses not allowed

• Hardcoded addresses

• Code should be position-indipendent or relocatable
• Linux/ELF:

• PIC & PIE supported, libraries all PIC, executables sometimes still
prelinked

• Windows/PE:
• No PIC support! But libraries/executables relocatable!

• x86 32bit PIE/PIC slower, no IP relative data addressing
• Relocated PE images not sharable between processes

63

ASLR – effectiveness

• Enough entropy?
• Base range size
• Alignment constraints
• Address width (64bit is better than 32bit)

• Randomization strategy
• Per process, system-wide per boot

• Source of randomness

64

ASLR – all or nothing

• ASLR only effective without exceptions

• One library/executable without ASLR might
already compromise security
• One datastructure without ASLR as well

65

Bypassing ASLR

• Low entropy
• Brute-force addresses (multiple attempts required)

• Memory leaks (information disclosure)
• Leak addresses to derive base addresses

• E.g., run-time address pointing into a library
• Construct and enforce a leak by memory corruption

• Application and vulnerability specific attacks
• Force predictable memory state

• Heap-spraying
• Pointer inference

• Use a side-channel
• Avoid using exact addresses

• Only corrupt least significant bytes i.e. offsets

66

Memory leak
Victim Attacker

GET /index.html HTTP/1.1GET /index.html HTTP/1.1
Host: www.vulnsite.comHost: www.vulnsite.com
Keep-Alive: 300Keep-Alive: 300
Connection: keep-aliveConnection: keep-alive
Cookie: CID=r2t5uvjq43Cookie: CID=r2t5uvjq43
5r4q7ib3vtdjq120f83jf85r4q7ib3vtdjq120f83jf8
... <binary data>... <binary data>

HTTP/1.1 200 OKHTTP/1.1 200 OK
Date: Fri, 12 Mar 2014 23:59:00 GMTDate: Fri, 12 Mar 2014 23:59:00 GMT
Content-Type: text/htmlContent-Type: text/html
Content-Length: 1354Content-Length: 1354
Allow: GET,POST,OPTIONS,HEADAllow: GET,POST,OPTIONS,HEAD
Cache-Control: public,max-age=30Cache-Control: public,max-age=30
<binary data... 0x41416232<binary data... 0x41416232
0xffed4460 0x77ff2332 0x...0xffed4460 0x77ff2332 0x...
>>

<html><html>
<head>...<head>...

Heap

Code

Stack

0xffed4460

GET /index.html HTTP/1.1GET /index.html HTTP/1.1
Host: www.vulnsite.comHost: www.vulnsite.com
Keep-Alive: 300Keep-Alive: 300
Connection: keep-aliveConnection: keep-alive
Cookie: CID=r2t5uvjq43Cookie: CID=r2t5uvjq43
5r4q7ib3vtdjq120f83jf85r4q7ib3vtdjq120f83jf8
... <binary data>... <binary data>

1

2

3

Trigger memory leak

Parse response for
leaked memory and
construct exploit

Exploit memory error
with tailored exploit

Runs web server software
with memory leak and
exploitable memory
corruption vulnerability

67

Memory leak

argumentsarguments

return addressreturn address

saved ebpsaved ebp

address mprotect()

dummy ebp

buf[1024]
Attacker
Code

“Shellcode“

address shellcode

4096

0x1|0x2|0x4

rwxrwx

vulnExecutable

Heap

Stack

libc

libc data

0x0efa4604

mprotect:mprotect:

0x0efa4604

0x0ebb0880

0x0dfff000
libc base

??

static
offset

mprotect = leaked pointer – static offset

0x0ebb0880 = 0x0efa4604 - 0x003f3d84

68

Memory leak – format string bug

#include <stdio.h>
#include <string.h>

#define STDIN 0

void memLeak() {
 char buf[256];
 scanf("%s", buf);
 printf(buf);
}

shell:~$ gcc -o memleak memleak.c

memleak.c: In function ‘memLeak’:

memleak.c:9:2: warning: format not a string literal and no format arguments [-Wformat-

security]

shell:~$./memleak

echo> hi

hi

shell:~$./memleak

echo> %llx,%llx,%llx,%llx,%llx,%llx,%llx,%llx

1,7fabf517cac0,a,ffffffff,0,6c6c252c786c6c25,252c786c6c252c78,786c6c252c786c6c

shell:~$

shell:~$ gcc -o memleak memleak.c

memleak.c: In function ‘memLeak’:

memleak.c:9:2: warning: format not a string literal and no format arguments [-Wformat-

security]

shell:~$./memleak

echo> hi

hi

shell:~$./memleak

echo> %llx,%llx,%llx,%llx,%llx,%llx,%llx,%llx

1,7fabf517cac0,a,ffffffff,0,6c6c252c786c6c25,252c786c6c252c78,786c6c252c786c6c

shell:~$

void main() {
 printf("echo> ");
 memLeak();

printf("\n");
 return;
}

69

Heartbleed – CVE-2014-0160 - OpenSSL

http://en.wikipedia.org/wiki/Heartbleed
Simplified Heartbleed explanation by FenixFeather licensed under CC

http://en.wikipedia.org/wiki/Heartbleed

70

DEP & ASLR

DEP & ASLR are generic defenses

• Exploitation becomes harder for all vulnerability
classes & attack techniques

• Together quite effective
• If implemented correctly and used continuously

• Injecting code and corrupting pointers with exact
addresses is in general desirable for attackers

71

DEP & ASLR

• But DEP & ASLR are not enough

• A determined attacker will use code-
reuse techniques and memory leaks to
bypass DEP & ASLR
• And application specific

bypasses/properties

72

Additional protections

• Raise vulnerability discovery and
exploit development costs with
additional protections

• The more line of defenses, the better!
• Implement protections against specific

vulnerability classes and exploitation
techniques

73

Additional protections

• Usually require source code changes
(annotations) and/or recompilation of
the application
• To add run-time checks

• Implement safe datastructures and
operations
• E.g., heap manager, SEH, vtable

74

Additional protections

• Stack canaries / Cookies
• Detects buffer overflows on stack

• Heap protections
• Protects heap management data and operations

• Pointer obfuscation
• GOT protection (BIND_NOW & RELRO)

• Relocate at load-time and mark GOT read-only

• /GS (more than just cookies)
• /SAFESEH (link-time, provide list of valid handlers)
• SEHOP (run-time, registry, might cause compatibility issues, walk

down SEH chain to final handler before dispatching / integrity
check)

• Virtual Table Verification (VTV) & vtguard

75

Stack canary / cookie
Stack during vulnFunc()

%ebp

%esp

void vulnFunc() {
<copy canary>

 char buf[1024];
 read(STDIN, buf, 2048);

<verify canary>
}

• Put an unkown value
before local buffer
• Verify canary at

function exit
• If value changed

raise exception

argumentsarguments

return addressreturn address

saved ebpsaved ebp

return address

saved ebp

buf[1024]

main() stack frame

rw-rw-

stack canary

Stack at function exit

%ebp

%esp

argumentsarguments

return addressreturn address

saved ebpsaved ebp

overwritten retaddr

overwritten ebp

buf[1024]

overwritten frame

rw-rw-

overwritten canary

stack canarystack canary

copy canary

ve
ri

fy
 c

an
ar

y

76

Stack canary / cookie

• Detects linear buffer overflows on stack
• At function exit

• Corruption of local stack not detected
• Only if canary / cookie value is overwritten

• Incurs runtime overhead

• Effectiveness relies on secret
• Leaking, predicting, guessing or brute-forcing

might work in special cases

77

DEP & ASLR Adoption

78

Windows

Windows XP Vista Windows 7 Windows 8

DEP > SP2 Opt-in (Opt-in 32bit) (Opt-in 32bit) (Opt-in 32bit)

ASLR Opt-in
*

Opt-in
*

Opt-in
+ Enforced by EXE

+ HE for 64bit
+ Full

* Opt-in for all images (/DYNAMICBASE)
• Gaps might still exist, not full ASLR (E.g., VirtualAlloc or MapViewOfFile)
• No difference between 32bit and 64bit ASLR

• Different ways to opt-in to ASLR and DEP
• Linker flag, process creation attribute, SetProcessMitigationPolicy API,

„MitigationOptions“ (Image File Execution Options), boot.ini switch

• DEP is mandatory on 64-bit Windows, on 32-bit Windows:
• From Vista on, /NXCOMPAT linker switch sufficient
• “Always On“ can be configured system-wide (incl. exceptions list)
• DEP opt-out for Windows Server (>2003)

79

Windows ASLR

• Introduced with Vista

• Windows 7 + Vista
• Gaps in ASLR might still exist
• Heaps and stacks randomized
• PEB/TEB randomized (limited entropy)
• VirtualAlloc and MapViewOfFile not randomized
• Non-ASLR images (without /DYNAMICBASE)
• Predictable memory regions (E.g., VirtualAlloc(), SharedUserData)

• Windows 8
• Processes can force ASLR for non-ASLR images
• All bottom-up/top-down allocations randomized (opt-in, /DYNAMICBASE)
• More entropy for PEB/TEB

Exploit Mitigation Improvements in Windows 8 / Black Hat USA 2012
Ken Johnson, Matt Miller / MSEC

80

Windows 8 ASLR

• High entropy for 64-bit (8TB addr. Space)

• High entropy bottom-up
• stacks, heaps, mapped files, VirtualAlloc, etc.
• Breaks spraying techniques

• High entropy top-down
• PEBs, TEBs, MEM_TOP_DOWN

• High entropy image randomization
• /HIGHENTROPYVA (EXE)

Exploit Mitigation Improvements in Windows 8 / Black Hat USA 2012
Ken Johnson, Matt Miller / MSEC

81

Windows 8 / 8.1

• Further improvements
• Sophisticated attacks still possible
• Code-reuse & info leaks
• Pwn2own 2014

“Writing exploits for Windows 8
will be very costly“
• 64bit, >IE10, VS 2012 + enable mitigations

Exploit Mitigation Improvements in Windows 8 / Black Hat USA 2012
Ken Johnson, Matt Miller / MSEC

82

Windows 8 / 8.1

• Built with enhanced /GS (v3, VS 2010)
• Array index range checks (compiler-inserted)

• Sealed optimization
• Eliminates indirect calls through vtable
• Direct call faster and reduces attack surface

• vTable guard (class annotation required)
• Random value “vtguard“ at end of vtable
• Verified before vtable gets used
• IE10 uses it for a handful key classes

Exploit Mitigation Improvements in Windows 8 / Black Hat USA 2012
Ken Johnson, Matt Miller / MSEC

83

Windows 8 / 8.1

• ASLR improvements

• Windows heap improvements
• Encounters specific exploitation techniques

• LFH & integrity checks
• Guard pages

• Allocates guard pages between heap memory
• Allocation order randomization (LFH, <16KB)

• Kernel improvements
• DEP, ASLR, Kernel pool integrity checks
• NULL dereference protection

Exploit Mitigation Improvements in Windows 8 / Black Hat USA 2012
Ken Johnson, Matt Miller / MSEC

84

Windows 7

• Ok, thanks, but I really just have 7...

• 64bit: DEP enforced
• 32bit: Opt-in

• Enforce ASLR with EMET
• And enable additonal EMET hardening

• Use newest client software
• Ideally, just one... and harden configuration

• And the usual: keep everything up-to-date!

85

Ubuntu Linux

10.04 12.04 14.04

NX/DEP (32bit,
non-PAE: emulated)

(32bit,
non-PAE: emulated)

(32bit,
non-PAE: emulated)

ASLR Full * Full * Full *

* Stack, libraries/mmap, brk, exec, vdso
• System-wide /proc/sys/kernel/randomize_va_space

• Executables: ASLR only for PIE (position-indipendent executable)
• On x86 this results in 5-10% performance loss

• Therefore not all executables are compiled as PIE
• On x86 64bit: PIE comes without penalties

• But still not all executables are PIEs

• Shared libraries: use position-indipendent code by default

• NX/DEP requires PAE, otherwise emulated

https://wiki.ubuntu.com/Security/Features
http://en.wikipedia.org/wiki/Physical_Address_Extension

https://wiki.ubuntu.com/Security/Features

86

iOS

• ASLR introduced with iOS 4.3 in 2010
• For full ASLR, executables need to be PIE

• Since 2011 default in XCode
• Else (at least in iOS 4), exec, stack, linker are at fixed addresses

• Mandatory Code Signing
• Application has to be signed (checked at execution time)

• Code Signing Enforcement (++)
• Executed code has to be signed (checked at runtime)
• No new executable code can be generated, mprotect(addr,len,PROT_EXEC)
• Mapped code is not mutable (W^X enforcement)

“iOS Security“ - Apple
Apple iOS 4 Security Evaluation – Dino A. Dai Zovi, Trail of Bits LLC

iOS 5 iOS 6 iOS 7 iOS 8

NX/DEP ++ ++ ++ ++

ASLR

XX

87

Android

* Stack and libraries/mmap
i.e. no ASLR for executable, heap/brk, linker

• NX/DEP introduced with 2.3 (Gingerbread)
• Partial ASLR introduced with 4.0

• Full ASLR and PIE support since 4.1
• Stack, libraries/mmap, executable, heap/brk, linker

https://www.duosecurity.com/blog/exploit-mitigations-in-android-jelly-bean-4-1
https://www.duosecurity.com/blog/a-look-at-aslr-in-android-ice-cream-sandwich-4-0

2.3.3 4.0.3 4.1 4.2 4.3 4.4

NX/DEP

ASLR Partial * Full Full Full Full

https://www.duosecurity.com/blog/exploit-mitigations-in-android-jelly-bean-4-1

88

Advanced AttacksAdvanced Attacks

89

Application specific attacks

• Today, attacks are much more
application and vulnerability specific!

• No universal exploitation techniques
• Attackers focus on promising applications

• ASLR bypass depends on situation
• Or uses information leaks

• DEP bypassed by code-reuse techniques
• ROP chain depends on available gadgets

90

Heap-spraying

• Payload delivery technique
• Shellcode and/or ROP chain

• Attacker goal: deliver data to
predictable address on heap

• First documented usage in 2001
• Widespread use in browser

exploits since 2005

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
http://en.wikipedia.org/wiki/Heap_spraying

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

91

Heap-spraying

• Only possible if attacker has
(partial) control over heap allocations
• Data and layout (indirectly)

• Popular in applications with
client-side scripting support
• E.g., Browsers, Flash, PDF Reader

• OS, heap implementation
and application specific

92

Heap-spraying
Victim Attacker

<html><html>
<script><script>
var shellcode = unescape('var shellcode = unescape('%u\4141%u\4141');');
</script></script>
</html></html>

?
Heap

Attacker Data

Code

Stack

Payload address
unknown

93

Heap-spraying
Victim Attacker

<html><html>
<script ><script >
var shellcode = unescape('var shellcode = unescape('%u\4141%u\4141');');
var bigblock = unescape('var bigblock = unescape('%u\9090%u\9090');');
var headersize = 20;var headersize = 20;
var slackspace = headersize + shellcode.length;var slackspace = headersize + shellcode.length;
while (bigblock.length < slackspace)while (bigblock.length < slackspace)
 bigblock += bigblock; bigblock += bigblock;
var fillblock = bigblock.substring(0,slackspace);var fillblock = bigblock.substring(0,slackspace);
var block = bigblock.substring(0,bigblock.length - slackspace);var block = bigblock.substring(0,bigblock.length - slackspace);
while (block.length + slackspace < 0x40000)while (block.length + slackspace < 0x40000)
 block = block + block + fillblock;block = block + block + fillblock;
var memory = new Array();var memory = new Array();
for (i = 0; i < 500; i++){ for (i = 0; i < 500; i++){ memory[i] = block + shellcode } }
</script></script>
</html></html>

0x06060606

Heap

Attacker Data

Code

Stack

Attacker Data

Attacker Data

Script sprays
objects/data to
the heap!

94

Heap-spraying
Victim Attacker

<html><html>
<script ><script >
var shellcode = unescape('var shellcode = unescape('%u\4141%u\4141');');
var bigblock = unescape('var bigblock = unescape('%u\9090%u\9090');');
var headersize = 20;var headersize = 20;
var slackspace = headersize + shellcode.length;var slackspace = headersize + shellcode.length;
while (bigblock.length < slackspace)while (bigblock.length < slackspace)
 bigblock += bigblock; bigblock += bigblock;
var fillblock = bigblock.substring(0,slackspace);var fillblock = bigblock.substring(0,slackspace);
var block = bigblock.substring(0,bigblock.length - slackspace);var block = bigblock.substring(0,bigblock.length - slackspace);
while (block.length + slackspace < 0x40000)while (block.length + slackspace < 0x40000)
 block = block + block + fillblock;block = block + block + fillblock;
var memory = new Array();var memory = new Array();
for (i = 0; i < 500; i++){ for (i = 0; i < 500; i++){ memory[i] = block + shellcode } }
</script></script>
</html></html>

0x06060606

Heap

Attacker Data

Code

Stack

Attacker Data

Attacker Data

Attacker Data

Attacker Data

Attacker Data

Attacker Data

Payload is at known
address now!

95

Heap-spraying

• Use control over heap to spray
the heap with data (payload)
• After spraying the data is found at a

deterministic address

• Sprayed data can be anything
• E.g., JS objects/strings, images

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
http://en.wikipedia.org/wiki/Heap_spraying

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

96

Heap-spraying

• Note: not feasible for effective ASLR bypass!
• Entire address space too large to spray

• Especially for 64bit address space
• Heap base address range has to be

non-randomized
• E.g., VirtualAlloc no ASLR up to Windows 7

• If effective ASLR in place heap-spraying
can still be useful
• Spray heap and corrupt heap relative offset

http://recxltd.blogspot.ch/2011/12/curious-case-of-virtualalloc-aslr-and.html
http://ifsec.blogspot.ch/2013/11/exploiting-internet-explorer-11-64-bit.html

97

Heap-spraying

• Without DEP: heap is executable

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
http://en.wikipedia.org/wiki/Heap_spraying

%eip

nop slednop sled shellcodeshellcode

nop slednop sled shellcodeshellcode

nop slednop sled shellcodeshellcode

nop slednop sled shellcodeshellcode

nop slednop sled shellcodeshellcode

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

98

Heap-spraying

• With DEP (exact spray desirable)

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
http://en.wikipedia.org/wiki/Heap_spraying

%esp = make %esp point to heap spray, %eip to ret

paddingpadding shellcodeshellcodeROP chainROP chain

%esp

shellcodeshellcodeROP nopsROP nops ROP chainROP chain

1.

%esp

paddingpadding shellcodeshellcodeROP chainROP chain2.

%eipROP chain:
make heap RWX +
transfer control to shellcode

1.

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

100

Heap-spraying countermeasures

• Heap-spray detection inside browsers
• Detect suspicious allocations

• Patterns, valid instructions, large static blocks
• Nozzle (>IE9) and BuBBle (>Firefox 9)

• Pre-allocation of popular regions
• EMET or HeapLocker , e.g., 0x0c0c0c0c

• Monitor memory usage and limit amount
of memory per process / script

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

101

Heap-spraying variations

• Randomize bytes in spray

• Don't use strings
• DEPS: „DOM Element Property Spray“
• DOM object properties = payload

• HTML5 spraying
• Uses canvas objects for payload and web

workers for speed up

https://www.corelan.be/index.php/2013/02/19/deps-precise-heap-spray-on-firefox-and-ie10/
http://exploiting.wordpress.com/2012/10/03/html5-heap-spray-eusecwest-2012/

https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/

102

Enforcing information leaks

• To bypass ASLR attackers can
“construct“ memory leaks

• Corrupt length field of a object and read
object data, e.g., JS string

• Length field corruption has to be feasible
without bypassing ASLR

• Use heap-spraying for reliability

http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php

https://www.corelan.be/index.php/2013/02/19/deps-precise-heap-spray-on-firefox-and-ie10/

103

Pointer inference

“Interpreter Exploitation: Pointer Inference and JIT Spraying“, Dion Blazakis

• Recover addresses of internal
objects without explicit memory leaks
• Only by „interacting“
• Like a side-channel attack

• E.g., over ActionScript Dictionaries as described by Dion
Blazakis
• Associative map data sctructure
• Keys can be integers, strings, other objects
• Hashtable uses values or references
• By placing ordered values into the data structure and iterating

through it bits of the object's address are disclosed

104

JITs

• JIT: Just-In-Time
• Refers to execution engines / compilers
• Native just-in-time code generation
• E.g., javascript engines in browsers, Java

VMs, .NET CLR, ActionScript, other
language runtimes

• JIT types: Method & Tracing JITs
• Front-end, syntax parser, produces IR
• Back-end, generates native code out of IR

“Attacking Clientside JIT Compilers“, Chris Rohlf, Yan Ivnitskiy – Matasano Security

105

JITs

• JIT vulnerabilities
• Incorrect code generation

• Like having a bug in generated native code
• Logic errors (in generated code)
• Information leaks
• Diversion of control-flow

• JITs are sources of vulnerabilities and
means of exploitation

“Attacking Clientside JIT Compilers“, Chris Rohlf, Yan Ivnitskiy – Matasano Security

106

JIT-spraying

• Remember DEP?
• Makes machine-code injection difficult

• But wait... JITs generate code!
• They need RWX memory (code cache)
• Native code is generated out of untrusted attacker

supplied higher-level source or code, e.g., javascript
or Java bytecode

Attacker
provided
high-level

source
or code Heap

JITJITJITJIT

rwxrwx

107

• Generate predictable byte sequences
in generated native code

• Example from “Attacking Clientside JIT C ompilers“

JIT-spraying

“Attacking Clientside JIT Compilers“, Chris Rohlf, Yan Ivnitskiy – Matasano Security

var a, b, c, d = -6.828527034422786e-229;var a, b, c, d = -6.828527034422786e-229;

movl $0x90909090,0x5c0(%esi)
movl $0x90909090,0x5c4(%esi)
movl $0x90909090,0x5c8(%esi)
movl $0x90909090,0x5cc(%esi)
movl $0x90909090,0x5d0(%esi)
movl $0x90909090,0x5d4(%esi)
movl $0x90909090,0x5d8(%esi)
movl $0x90909090,0x5dc(%esi) rwxrwx

Floating point value
uses 64bit in 32bit x86,
will be represented as
0x9090909090909090

0x90 is opcode for nop

x86 has variable
instructions length,
jump into valid
instructions possible

108

• If JIT memory locations are predictable
• Spraying or non-randomized allocations
• Information leaks

• Attackers might inject code into
executable memory and divert
execution to it
• Or spray gadgets throughout JIT memory

JIT-spraying

“Attacking Clientside JIT Compilers“, Chris Rohlf, Yan Ivnitskiy – Matasano Security

109

• Randomization / full ASLR

• Page permissions
• RW for generation, RX for execution

• Guard pages
• Prevent overflows from RW to RWX pages
• Overwrite generated native code and trigger execution

• Constant folding / blinding

• Allocation size restrictions for native code

• Random NOP insertion, random code base offsets

JIT hardening

“Attacking Clientside JIT Compilers“, Chris Rohlf, Yan Ivnitskiy – Matasano Security

110

Attacking safe language VMs

• Just use a type & memory safe language ?

But language VM
• May be implemented in an unsafe language
• May use or provide interfaces to unsafe libraries

Exploit memory errors in the VM or in unsafe
libraries used by the VM or the application

111

Java VM written in C/C++

HardwareHardware

Operating SystemOperating System

LibrariesLibraries

Java VMJava VM

JavaJava
ApplicationApplication

JavaJava
ApplicationApplication

Java API & LibrariesJava API & LibrariesJava API & LibrariesJava API & Libraries

JNIJNIJNIJNIExecution Engine – JIT | GCExecution Engine – JIT | GCExecution Engine – JIT | GCExecution Engine – JIT | GC

So
ft

w
ar

e
St

ac
k

Java Application Process

112

Java VM written in C/C++

HardwareHardware

Operating SystemOperating System

LibrariesLibraries

Java VMJava VM

JavaJava
ApplicationApplication

JavaJava
ApplicationApplication

Java API & LibrariesJava API & LibrariesJava API & LibrariesJava API & Libraries

JNIJNIJNIJNIExecution Engine – JIT | GCExecution Engine – JIT | GCExecution Engine – JIT | GCExecution Engine – JIT | GC

So
ft

w
ar

e
St

ac
k

Java Application Process

Potentially prone to memory errors & corruption

113

Attacking safe language VMs

E.g., Java VM
• CVE-2013-1491
• Affected Oracle Java SE 7 / 6 / 5
• Memory error in OpenType Fonts

handling within native layer of JRE
• Leveraged to arbitrary code excecution
• Completely bypassed DEP & ASLR

Demonstrated at Pwn2Own at CanSecWest 2013 by Joshua Drake (on Windows 8 + Java SE 7 Update 17)
http://www.accuvant.com/blog/pwn2own-2013-java-7-se-memory-corruption
https://media.blackhat.com/bh-ad-11/Drake/bh-ad-11-Drake-Exploiting_Java_Memory_Corruption-WP.pdf

114

Attacking Java VM

Attack surface

• Any Java application relying on native code

• Untrusted Java Applet (over the web)
• Java Applet under attacker control
• Sandboxed, but a lot of native code reachable

• Image, sound, data processing

Demonstrated at Pwn2Own at CanSecWest 2013 by Joshua Drake (on Windows 8 + Java SE 7 Update 17)
http://www.accuvant.com/blog/pwn2own-2013-java-7-se-memory-corruption
https://media.blackhat.com/bh-ad-11/Drake/bh-ad-11-Drake-Exploiting_Java_Memory_Corruption-WP.pdf

115

Oracle JRE 6 / 7 / 8

• JRE 6
• Only used /GS and /SafeSEH (stack protections)
• No DEP or ASLR

• DEP could be enforced
• But msvcr71.dll allowed easy bypass (no ASLR)

• Shipped with all releases of JRE 6

• JRE 7 & 8
• Many improvements
• DEP & ASLR enabled

https://media.blackhat.com/bh-ad-11/Drake/bh-ad-11-Drake-Exploiting_Java_Memory_Corruption-WP.pdf

116

Advanced DefensesAdvanced Defenses

117

Additional hardening

• A lot of additional hardening techniques

• EMET on Windows

• PaX/grsecurity patches on Linux

• Hardened configurations

• And many additional tools and techniques

118

Enhanced Mitigation Experience Toolkit

• EMET 5.0, released 31.7.2014
• 3.x 2012, 4.x 2013

• Hardening Toolkit
• Set of protections against exploitation techniques
• Works on binaries, configurable per process
• Interesting for legacy software

• Supports enterprise deployment
• Built-in Group Policy and

System Center Configuration Manager support

http://technet.microsoft.com/en-us/security/jj653751

119

EMET 5.0

• Application compatibility risk
• Testing required before production rollout

• Some features also exist without EMET
• But can be activated for older Windows versions

• “EMET User's Guide“ not that detailed

• Supports Windows Vista SP2, Windows 7 SP1, Windows 8/8.1
and Server 2003/2008/2012

http://technet.microsoft.com/en-us/security/jj653751

120

EMET 5.0

• SEHOP - run-time validation of SEH chain
• DEP enforcement (without flag)
• Heapspray pre-allocation
• ASLR enforcement (without flag)

• < Windows 8 (native ASLR)
• EAF – Export Address Table Access Filtering
• EAF+

• Stack register boundary check, stack/frame pointer mismatch
• Detects memory read accesses to certain tables/headers

121

EMET 5.0

• Bottom-up randomization
• Randomizes (8 bits entropy) base address of bottom-up allocations (heaps,

stacks, other memory allocations)

• ROP mitigations (all for 32bit and some for 64bit)
• Load library checks (LoadLibrary API, UNC paths -> network)
• Memory protection check, disallows making stack executable
• Caller checks for critical functions

• Check if transfer originated from call instruction
• Simulate execution flow

• Check after a critical function if ROP chain is executed
• Stack pivot

• Check if stack has been pivoted

122

EMET 5.0

• Attack Surface Reduction
• DLL blacklist per application (and Security Zone)
• E.g., disable Java plugin within IE in Internet Zone

• Advanced Mitigations for ROP
• Deep hooks (protect critical APIs on all levels)
• Anti detours
• Banned functions (ntdll!LdrHotPatchRoutine)

123

EMET 5.0

124

EMET 5.0

http://support.microsoft.com/kb/2909257/en-us

125

EMET 4.1 bypass

• From the “Executive Summary“

“We were able to bypass EMET’s protections in
example code and with a real world browser exploit.“

• No ROP protections for 64 bit processes
• EMET raises the costs for exploit development

• But no magic bullet

“Bypassing EMET 4.1“ Jared DeMott, Security Researcher, Bromium

126

Linux - PaX

https://www.grsecurity.net/features.php

• Better ASLR implementation
• Additional kernel protections
• No RWX pages (basically W^X)
• Random padding between thread stacks
• Hardened BPF JIT in kernel
• Exploit bruteforce protection

• Restrict forks on network services

127

Linux - Ubuntu

https://wiki.ubuntu.com/Security/Features

• Long list of security features
• Run-time and compile-time hardening

• Also support for MAC (instead of DAC)
• Implemented as LSM:

AppArmor, SELinux, SMACK

• SECCOMP: syscall filtering

128

Sandboxing

• Any mean of isolation & reducing privileges
• Goal: restrict potentially malicious code

• Not trusted or not trustworthy

• Can be implemented on any layer
• Can come with virtualization/emulation

• App sandbox on iOS / Android
• A virtual machine
• Browser process sandbox

129

ConclusionConclusion

130

Conclusion

• Memory errors are still an issue

• Attacks and defenses gain complexity

• In the end... there is still a residual risk

131

Conclusion

• There are a lot of hardening technologies
• That just have to be used
• Proper risk assessment and

technical understanding is key

• There is a lot of vendor awareness
• Consequently, products are getting more secure

• New effective technologies are on the rise...

132

Thanks!
antonio.barresi@inf.ethz.ch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132

